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hort- and Long-Term Functional Consequences of
luoxetine Exposure During Adolescence in Male Rats

ergio D. Iñiguez, Brandon L. Warren, and Carlos A. Bolaños-Guzmán

ackground: Fluoxetine (FLX), a selective serotonin reuptake inhibitor, is prescribed for the treatment of major depressive disorder in
oung populations. Here, we explore the short- and long-term consequences of adolescent exposure to FLX on behavioral reactivity to
motion-eliciting stimuli.

ethods: Adolescent male rats received FLX (10 mg/kg) twice daily for 15 consecutive days (postnatal days 35– 49). The influence of FLX on
ehavioral reactivity to rewarding and aversive stimuli was assessed 24 hours (short-term) or 3 weeks after FLX treatment (long-term). A
eparate group of adult rats was also treated with FLX (postnatal days 65–79) and responsiveness to forced swimming was assessed at
dentical time intervals as with the adolescents.

esults: Fluoxetine exposure during adolescence resulted in long-lasting decreases in behavioral reactivity to forced swimming stress and
nhanced sensitivity to sucrose and to anxiety-eliciting situations in adulthood. The FLX-induced anxiety-like behavior was alleviated by
e-exposure to FLX in adulthood. Fluoxetine treatment during adolescence also impaired sexual copulatory behaviors in adulthood.
luoxetine-treated adult rats did not show changes in behavioral reactivity to forced swim stress as observed in those treated during
dolescence and tested in adulthood.

onclusions: Treating adolescent rats with FLX results in long-lived complex outputs regulated by the emotional valence of the stimulus,
he environment in which it is experienced, and the brain circuitry likely being engaged by it. Our findings highlight the need for further
esearch to improve our understanding of the alterations that psychotropic exposure may induce on the developing nervous system and the

otential enduring effects resulting from such treatments.
ey Words: Adolescence, antidepressant, anxiety, depression, flu-
xetine, rat, sexual behavior

ntil relatively recently, the existence of major depressive
disorder (MDD) in pediatric populations was not well
recognized. Epidemiological reports now indicate that

ood disorders are quite common early in life, affecting approx-
mately 2% to 8% of children and adolescents, respectively (1,2).
ediatric MDD can lead to impairments in various psychiatric and
unctional domains such as antisocial personality, bipolar disor-
er, substance abuse, homelessness, self-harm, and up to 75%
isk of recurrent depressive episodes in adulthood (3–7). These
bservations indicate an adverse impact of MDD on the devel-
pment of neural substrates mediating cognitive, emotional, and
ocial functioning (8–10). Thus, depression is a serious disorder
ecessitating timely and appropriate therapeutic intervention.

Fluoxetine (FLX) (Prozac), a selective serotonin reuptake
nhibitor (SSRI), is the first drug approved for pediatric MDD
11). Although data about the effectiveness and safety of phar-
acotherapy in youngsters are sparse, it is conceivable that

reatment decisions for acute management of symptoms are
ade under the assumption that limiting dysfunction outweighs

he potential for long-term side effects (1,12–14). Decisions
egarding antidepressant use in early life have been largely based
n data from adults (15,16). Although reliable evidence-based
ndications for SSRI use and its potential long-term consequences in
oungsters are lacking, prescription rates are on the rise (16–21).
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The acute effects of SSRI antidepressant medications are well
defined: they increase the brain’s serotonin neurotransmission;
however, they exert their mood-elevating effects after prolonged
(i.e., weeks) administration (22,23). Serotonin is pivotal in the
regulation of adolescent brain development in both rodents and
humans (24,25). There is extensive serotonergic innervation of
key brain regions involved in the control of emotional, cognitive,
and motivated behaviors (25–28), and dysregulation of this
neurotransmitter system has been correlated with deficits in
behavior and emotional regulation (29–32). Because SSRI expo-
sure in youngsters occurs at a time of ongoing neuronal adapta-
tions (33–35) and such treatments can last for years (7,36,37), it
is not difficult to conceive the notion that antidepressant treat-
ments impact development of brain pathways dramatically influ-
encing neurobiological functioning later in life.

Given the prevalence of prescription antidepressant use dur-
ing adolescence and the scarcity of knowledge regarding long-term
effects of such treatments, it is essential that the neurobiological
consequences associated with FLX exposure be characterized.
Thus, this study was designed to assess the short- and long-term
behavioral responsivity to a range of emotion-eliciting stimuli
after FLX exposure during adolescence (postnatal day [PD]
35–49) in male rats.

Methods and Materials

Subjects
Male Sprague-Dawley rats were obtained from Charles River

(Raleigh, North Carolina). For the initial experiment (Figure 1), rats
arrived on the same day at PD30 (adolescent) and PD60 (�250–275
g, adults). For all other experimental conditions, rats arrived on
PD30 and treatment started at PD35 or PD65 as depicted in
Figure S1 in Supplement 1. The age at the start and duration of
the experimental manipulations in adolescent rats (PD35–PD49)
was selected because it roughly approximates adolescence in

humans (33,35,38). Rats were housed in pairs in clear polypro-
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ylene boxes containing wood shavings in an animal colony
aintained at 23°C to 25°C on a 12-hour light-dark cycle in which

ights were on between 07:00 and 19:00 hours. Rats were
rovided with food and water ad libitum.

rug Treatment and Experimental Design
Fluoxetine hydrochloride was obtained from Sigma (St. Louis,

issouri), dissolved in sterile distilled water, and administered in
volume of 2 mL/kg. An initial experiment was conducted using

he forced swim test (FST) to establish the FLX dose that would
eliably decrease immobility as characterized in adult (250–275
) rats (39,40). The FST consists of two swimming sessions over
days. The PD35 and PD65 rats were exposed to the FST on day
and then received intraperitoneal injections of FLX (0, 2.5, 5, 10,
r 20 mg/kg) 23 hours, 5 hours, and 1 hour before re-exposure
o the FST (day 2). Based on the results from this experiment
Figure 1), separate groups of PD35 rats were treated with FLX (0
r 10 mg/kg) twice daily (4 hours apart) for 15 consecutive days.
ats were randomly assigned to treatment and behavioral con-
itions, and the schedule of behavioral testing was counterbal-
nced among all groups (Table S1 in Supplement 1). Because
odents metabolize FLX about 10 times faster than humans (41),
his drug schedule was selected to approximate FLX levels
bserved clinically. Short-term behavioral testing began 24 hours
fter the last injection, whereas long-term assessments started
hen subjects reached adulthood (Figure S1A in Supplement 1).
ats assigned to receive FLX in adulthood (treatment starting at
D65, Figure S1B in Supplement 1) were used as positive control
ats (matched for drug treatment and testing time) only for the
ST. Rats treated with FLX during adolescence and re-exposed to
LX as adults were tested on a single behavioral paradigm (i.e.,
ood approach in a novel environment; Figure S5 and Table S1 in
upplement 1). Behavioral observations and analyses were per-
ormed by observers with no knowledge of the treatment

igure 1. Acute effects of fluoxetine on forced swimming behaviors in adol
A) Latency to become immobile, (B) total immobility, (C) swimming counts,
fter three injections (same dose) of fluoxetine (0, 2.5, 5, 10, or 20 mg/kg) 1
nalyses of variance (p � .05) between the age groups. *Significantly differe
onditions of each rat. All experiments were conducted in

ww.sobp.org/journal
compliance with the 1996 National Institutes of Health Guide-
lines for the Care and Use of Laboratory Animals and approved
by Florida State University Animal Care and Use Committee.

Sucrose Preference
The sucrose preference test (Figure S4 in Supplement 1)

consisted of a two-bottle choice paradigm, as described previ-
ously (42) (full details in Supplement 1).

Locomotor Activity
Spontaneous locomotor activity was indexed as distance

traveled (cm) in an open-field (OF) apparatus for 30 minutes (see
Figure S3A,B in Supplement 1 for details and results).

Novel Object Approach
This test was conducted over 2 days. Rats were introduced to

the OF for 30 minutes (day 1). On day 2, rats were brought back
to the OF for a 5-minute re-acclimation period, and immediately
after, a novel object (a white polyvinyl chloride plastic rod [5 cm
diameter, 7.5 cm height]) was placed in the center of the
apparatus. Rats were allowed to explore the object for 5 minutes
(light intensity: 5 lux). Latency to approach and time spent
exploring the object, on initial approach, were measured. Explo-
ration was scored only when the rat’s nose or front paws touched
the object. Longer latencies were interpreted as an anxiety-like
response, while exploration time was interpreted as being asso-
ciated with reward (43,44).

Food Approach in a Novel Environment
This test was modified from Ansorge et al. (29) and performed

under red light at the beginning of the dark phase (testing time:
5 minutes). At 17:00 hours, rats were single-housed with access
to water. At the start of the dark phase (19:00 hours), rats were
placed in a corner of the OF containing a single food pellet

t (PD35; n � 8 –9/dose) and adult (PD70�; n � 8 –10/dose) male rats (A–E).
limbing counts, and (E) floating counts of rats tested on the forced swim test

d 23 hours between swims. Data were analyzed using individual one-way
m vehicle control rats within the same age group. PD, postnatal day.
escen
(D) c
, 5, an
(familiar rat chow) placed on a circular white filter paper (12 cm)



p
t
a
a
h

E

a
p

F

t
s
S

S

o
a
p
i
s
(

S

r
m
o
f
t
p
S

R

E

[
R
i
e
.
c
e

i
8
l
i
(
[
f

E

t
i
P
m
s
F

S.D. Iñiguez et al. BIOL PSYCHIATRY 2010;67:1057–1066 1059
ositioned in the center of the apparatus. Latency to approach
he food and begin feeding was scored. The test ended immedi-
tely after rats started feeding or if they failed to approach food
fter 5 minutes, at which time they were placed back in their
ome cage with normal access to food and water.

levated Plus-Maze
The time spent and number of entries into the open arms of

n elevated plus-maze (EPM) were assessed over 5 minutes, as
reviously described (42) (Supplement 1).

orced Swim Test
The FST was conducted as previously described (45). Latency

o immobility, total immobility, and behavioral counts (i.e.,
wimming, climbing, and floating) were recorded (details in
upplement 1).

exual Behavior
The sexual behavior experiments were carried out as previ-

usly described (46) under red light conditions between 13:00
nd 18:00 hours. Male rats were given a 5-minute acclimation
eriod to the testing arena, and testing was initiated by the

ntroduction of a receptive female rat to the arena. Testing
essions (at PD80 and PD90, respectively) lasted 90 minutes
Supplement 1).

tatistical Analyses
Assignment of subjects to the various testing conditions was

andom. Behavioral data were analyzed using one-way or
ixed-design (between and within variables) repeated analyses
f variance (ANOVA) followed by Fisher’s least significant dif-
erence post hoc test. When appropriate, additional Student t
ests were used to determine statistical significance of pre-
lanned comparisons. Data are expressed as the mean � SEM.
tatistical significance was defined as p � .05.

esults

stablishing FST Behavioral Reactivity
Fluoxetine increased latency to immobility in adolescents

F (4,39) � 5.43, p � .001; Figure 1A, left panel; n � 8–9/group].
ats receiving 10 or 20 mg/kg FLX displayed longer latencies to

mmobility when compared with control rats (p � .05). Fluox-
tine had a tendency toward decreasing total immobility (p �
07; Figure 1B) and dose-dependently increased swimming
ounts [F (4,39) � 3.77, p � .01; Figure 1C], while having no
ffect on climbing or floating counts (Figure 1D,E).

Fluoxetine dose-dependently increased latency to immobility
n adults [F (4,39) � 8.88, p � .001; Figure 1A, right panel; n �
–10/group]. Rats receiving 5, 10, or 20 mg/kg FLX displayed

onger latencies to immobility (p � .05) and decreased total
mmobility [F (4,39) � 3.12, p � .02] compared with control rats
p � .05; Figure 1B). Fluoxetine increased swimming counts
F (4,39) � 2.72, p � .04; Figure 1C], without affecting climbing or
loating counts.

ffects of FLX on Body Weight
Based on the results above, 10 mg/kg FLX was selected to

reat adolescent and adult rats for 15 days (twice daily). Figure S2
n Supplement 1 shows the effects of FLX on body weight gain in
D35 (n � 18/group) and PD65 (n � 7–8/group) rats. A
ixed-design repeated measures ANOVA revealed that FLX

ignificantly decreased weight gain across days [main effect:

(14,476) � 930.75, p � .0001], drug [main effect: F (1,34) �
11.67, p � .002; Figure S2A inset in Supplement 1], and as a
function of day by drug [interaction: F (14,476) � 25.31, p �
.0001] in adolescent rats (Figure S2A in Supplement 1). Although
body weight increased with age, the FLX-treated adolescent rats
displayed lower weights than control rats (p � .05). Similarly,
FLX reduced body weight in adult rats (Figure S2B in Supplement
1) as a function of injection day [F (14,182) � 14.93, p � .0001],
drug [F (1,13) � 25.11, p � .0001; Figure S2B inset in Supplement
1], and day by drug [F (14,182) � 18.05, p � .0001]. Fluoxetine-
treated adult rats displayed lower weights than control rats
(p � .05).

Effects of Chronic FLX on Sucrose Preference
Fluoxetine did not influence total fluid intake (water �

sucrose; Figure 2B) 24 hours after treatment (n � 13/group;
short-term). Conversely, there was a main effect of sucrose
[F (1,24) � 4.71, p � .04; Figure 2A), with FLX-treated rats
preferring sucrose only at the .25% concentration (p � .05). A
separate ANOVA revealed that FLX treatment during adolescence
increased sucrose preference in adulthood (Figure 2C; long-
term), without affecting total fluid intake (Figure 2D; n �
15/group). Sucrose preference varied by sucrose concentration
[main effect: F (4,112) � 145.56, p � .05] and drug [main effect:
F (1,28) � 9.08, p � .05]. Fluoxetine treatment increased sucrose
preference only at the .125%, .25%, and .5% concentrations (p �
.05, respectively; Figure 2C).

Effects of FLX on Anxiety-Like Behaviors
Elevated Plus-Maze. Fluoxetine induced anxiety-like behav-

iors 24 hours after the last injection (short-term; n � 8/group)
and in adulthood (long-term; n � 8/group). Fluoxetine signifi-
cantly decreased percent time spent [F (1,14) � 11.03, p � .005;
Figure 3A, left panel] and percent entries [F (1,14) � 9.63, p �
.008; Figure 3B, left panel] in the open arms of the EPM. Similarly,
rats tested in adulthood spent significantly less percent time in
the open arms [F (1,14) � 21.93, p � .0001; Figure 3A, right panel]
but did not differ in percent entries into the open arms of the
EPM (Figure 3B, right panel).

Novel Object Approach in a Familiar Environment. There
were significant differences in the latency to approach a novel
object 24 hours after treatment [t (17) � �2.16, p � .05].
Fluoxetine-treated rats took significantly longer to approach the
object than control rats (Figure 4A; n � 9–10/group). Addition-
ally, once the FLX-treated rats first approached the object, they
spent significantly more time exploring it (Figure 4B) than
control rats [t (17) � �3.59, p � .02]. A somewhat similar
behavioral pattern was observed in rats tested in adulthood:
FLX-treated rats displayed longer latencies to approach (Figure
4C; n � 14–15/group) [t (27) � �2.32, p � .03] but showed no
differences in time spent exploring the object (Figure 4D).

Latency to Feed in a Novel Environment. Fluoxetine-treated
rats had significantly longer latencies to approach food in a novel
environment 24 hours after treatment [t (16) � �4.24, p � .05; n �
9/group; Figure 4E, short-term] or in adulthood [t (10) � �2.35,
p � .05; n � 6/group; Figure 4E, long-term]. We also assessed
whether FLX could reverse these effects in a separate group of
adult rats pretreated with FLX during adolescence. Repeated [5
days; t (10) � �3.8, p � .05], but not acute (1 day), FLX (10
mg/kg) reversed the aberrant latency to approach food in these
rats (Figure 4F; n � 6/group).

Effects of FLX on the FST
We used the FST to assess rats’ responsiveness to stress 24
hours after treatment (Figure 5A–C) or when they reached

www.sobp.org/journal
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dulthood (Figure 5D–F). Fluoxetine-treated rats displayed
onger latencies to immobility [t (9) � �6.1, p � .05] and
ecreased total immobility [t (9) � 3.01, p � .05] compared with
ontrol rats 24 hours after treatment (Figure 5A,B; n � 5–6/
roup). Fluoxetine induced higher swimming [t (9) � �3.87, p �
05] and climbing counts [t (9) � �2.67, p � .05], with lower
loating counts [t (9) � 9.16, p � .05; Figure 5C] than control rats.
luoxetine-treated rats during adolescence and tested in adult-
ood also displayed a behavioral profile similar to the short-term
roup (Figure 5D–F; n � 15/group): longer latencies to immo-
ility [t (28) � �2.39, p � .02; Figure 5D], lower total immobility

t (28) � 3.40, p � .05; Figure 5E], higher swimming counts [t (28) �
3.78, p � .001], higher climbing counts [t (28) � �3.34, p � .05],

nd lower floating counts [t (28) � 3.35, p � .002; Figure 5F].
A separate group of adult rats was tested on the FST after

hronic FLX (matched drug treatment and testing schedule, as
ith the adolescent group above; Figure 6A–F) to determine
hether these FLX-induced effects on the FST are specific to
dolescent treatment. These adult FLX-treated rats showed a similar
ehavioral profile as the FLX-treated adolescents only when tested
4 hours after the last injection (Figure 6A–C; n � 7/group): longer
atencies to immobility [t (12) � �4.35, p � .001; Figure 6A],
ecreased total immobility [t (12) � 3.48, p � .005; Figure 6B],
igher swimming counts [t (12) � �4.42, p � .001], higher
limbing counts [t (12) � �4.25, p � .001; Figure 6C], and lower
loating counts [t (12) � 6.06, p � .0001; Figure 6C]. Fluoxetine
ad no effects when the long-term adult group was tested 21

ays after treatment (Figure 6D–F, n � 7/group).

ww.sobp.org/journal
Effects of Adolescent FLX Exposure on Sexual Behavior
Fluoxetine-exposed rats exhibited deficits in sexual activity

when assessed in two separate 90-minute sexual behavior ses-
sions (PD80 and PD90, respectively; Figure 7A–C; n � 10/
group). A repeated measures (sex session) ANOVA indicated that
mount latency varied only as a function of drug [F (1,18) � 7.38,
p � .01; Figure 7A]. Fluoxetine-pretreated rats displayed longer
mount latency than control rats at PD80 (p � .05; Figure 7A, left
panel) but not at PD90 (Figure 7A, right panel). Fluoxetine also
influenced ejaculation latency between the groups [F (1,18) �
28.31, p � .0001], with FLX-exposed rats displaying longer times
to reach the first ejaculation at PD80 (p � .05; Figure 7B, left
panel) and PD90 (p � .05; Figure 7B, right panel). Ejaculation
frequency was affected by FLX [F (1,18) � 20.01, p � .0001;
Figure 7C], with FLX-exposed rats showing lower ejaculation
frequency than control rats at both PD80 (p � .05) and PD90 (p �
.05) sessions.

Discussion

Antidepressants are often prescribed to pediatric populations
(21); yet, there is a scarcity of knowledge regarding the short-
term and/or long-lasting neurobiological consequences of such
treatments during early life (11). Thus, this study was designed to
assess enduring behavioral outcomes in response to rewarding
and aversive situations resulting from repeated FLX exposure
during adolescence in male rats. This approach was taken
because serotonin and compounds that regulate its function

Figure 2. Flouxetine (10 mg/kg, b.i.d.) exposure during ado-
lescence regulates responses to sucrose reward (A–D). (A)
Exposure to FLX significantly increased sucrose preference
when compared with VEH-treated control rats (at the .25%
concentration) 24 hours after treatment (p � .05; n � 13/
group). (C) Rats treated with FLX during adolescence and
tested in adulthood (long-term) show a significant increase in
sensitivity to the rewarding effects of sucrose (p � .05; n �
15/group). No differences in total fluid intake (sucrose � wa-
ter) were detected regardless of treatment or time of testing
(B and D). *Significantly different than VEH-treated control
rats (p � .05). Data are presented as percent preference or
total mL consumed between VEH- and FLX-exposed rats
(mean � SEM). b.i.d., twice daily; FLX, fluoxetine; VEH, vehicle.
interact with mesolimbic reward systems, part of the circuitry
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ontrolling emotional and motivated behaviors (47–52). We
eport that exposure to FLX during PD35 to PD49 leads to
ecreased responsiveness to stressful situations, increased sen-
itivity to natural reward, and anxiety-eliciting situations, includ-
ng deficits in sexual behavior, in adulthood.

Exposure to FLX during adolescence increased rats’ normal
ensitivity to sucrose (a natural reward) in adulthood, while only
nducing a minimal increase in preference (at the .25% concen-
ration) in rats tested 24 hours after treatment. Because antide-
ressants reduce body weight and caloric intake in animals and
umans (53–55), decreases in sucrose preference were expected.
owever, the lack of changes in overall liquid intake (sucrose �
ater) between the groups indicates that increases in preference
re likely due to the ability of FLX to alter rats’ responsiveness to
he rewarding effects of sucrose in adulthood. Therefore, it is
ossible that the young rats tested short-term did not respond
obustly to sucrose because of the ability of FLX to decrease
aloric intake and palatability of sweet solutions (56,57). To
urther explore reward sensitivity after FLX administration, time
pent exploring a novel object in a familiar environment was
easured (43,58,59). Fluoxetine-treated adolescent rats spent

ignificantly longer exploring the object 24 hours after treatment,
ndicating that interacting with the novel object was rewarding
60). However, no changes in object exploration were observed
ong-term and it consequently failed to complement the sucrose
reference findings. Brain reward pathways, such as the nucleus

igure 3. Fluoxetine (10 mg/kg, b.i.d.) exposure during adolescence regu-
ates anxiety-like behavior in the EPM (A and B). Short-term (n � 8/group):
LX significantly reduced time spent (A, left panel) and entries (B, left panel)

nto the open arms of the EPM 24 hours after the last FLX injection (p � .05).
ong-term (n � 8/group): FLX also reduced time spent (A, right panel) in the
pen arms of the EPM, without influencing entries (B, right panel) compared
ith VEH-treated control rats. Data are presented as percent time spent and
ercent entries (mean � SEM) into the open arms of the EPM. b.i.d., twice
aily; EPM, elevated plus-maze; FLX, fluoxetine; VEH, vehicle.
ccumbens (NAc) and its dopaminergic input from the ventral
tegmental area, mediate responses to natural rewards (52,61,62).
Ingesting sweet solutions and exploring novel objects activate
this circuit (52,63,64) and disruption of this neural projection
decreases interest for sucrose and novelty (61,65–67). As in the
present study, research assessing the effects of antidepressant
treatment on reward-related behavior reveals a complex picture.
Antidepressants can decrease (68,69), increase (70,71), or have
no effects (72) on responding for rewarding brain stimulation,

Figure 4. Effects of fluoxetine (10 mg/kg, b.i.d.) exposure during adoles-
cence on the latency to approach a novel object in a familiar environment
(A–D) and the latency to feed in a novel environment (E and F). Short-term
(n � 9 –10/group): FLX-treated rats had significantly longer latencies to
approach (A) and spent significantly more time exploring (B) the novel
object 24 hours after the last FLX injection. Long-term (n � 14 –15/group):
FLX-treated rats displayed significantly longer latencies to approach (C) but
spent similar time exploring (D) the novel object compared with control
rats. (E) FLX increased latency to feed in a novel environment at both
short-term (n � 9/group) and long-term (n � 6/group) time points of be-
havioral assessment. (F) Acute exposure to FLX (10 mg/kg) did not decrease
latency to feed (F, left panel; n � 6/group), while chronic exposure (5 days)
to FLX (10 mg/kg) reversed this effect to control levels (F, right panel; n �
6/group) in a separate group of adult rats pretreated with FLX during ado-
lescence. *Significantly different compared with VEH-treated control rats

(p � .05). b.i.d., twice daily; FLX, fluoxetine; VEH, vehicle.

www.sobp.org/journal
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ith equivocal results when assessing responding for natural
ewards (56,73). Nevertheless, antidepressants do sensitize brain
eward pathways (74–76): they increase the firing activity of
entral tegmental area dopamine neurons (77), increase dopa-
ine neurotransmission in the striatum (78–80), and enhance

ocaine and morphine reward (81,82). Therefore, it is conceiv-
ble that FLX exposure during adolescence enhances reward
rocesses that are likely discernable only in adulthood; however,
ore detailed studies assessing this notion are needed.
Our findings further indicate that FLX enhances reactivity to

nxiogenic stimuli as measured in the EPM 24 hours after
reatment in adolescent rats. This anxiety-like response was
ong-lived because the FLX-treated adolescent rats tested in
dulthood showed similar anxiety-like responding. We also used
atency to approach a novel object in a familiar environment and
atency to start feeding in a novel environment as additional
ndexes of anxiety-like behaviors. When exposed to novel
nvironments, rats face a conflict between their motivation to

igure 5. Effects of fluoxetine (10 mg/kg, b.i.d.) on behavioral responsivity
o swim stress (A–F). Short-term (n � 5– 6/group): FLX-treated rats dis-
layed significantly longer latencies to immobility (A), lower total immobil-

ty (B), higher swimming and climbing counts and lower floating counts (C)
hen compared with VEH-treated control rats. Long-term (n � 15/group):

LX-treated rats displayed similar behavioral profile (D–F) as those tested in
he short-term condition when compared with their VEH-treated control
ats. *Significantly different from VEH-treated rats (p � .05). Data are pre-
ented as latencies to become immobile and total immobility (in seconds)
nd as cumulative 5-second intervals of swimming, climbing, and floating
ounts (mean � SEM). b.i.d., twice daily; FLX, fluoxetine; FST, forced swim
est; VEH, vehicle.
xplore the environment (novelty preference) and fear of poten-

ww.sobp.org/journal
tial negative consequences (83,84). Thus, longer latencies to
approach a novel object or to start feeding have been interpreted
as indicative of higher levels of anxiety (29). Similar to the EPM
findings, FLX-exposed rats took longer to approach a novel
object in a familiar environment and to start feeding in a novel
environment at both short- and long-term testing time points.
Because familiarity of environment increases novelty seeking
and the FLX-treated rats had longer latencies to approach the
novel object in a familiar environment, it is conceivable that FLX
exposure during adolescence induces “trait” and not situational
anxiety (83,85); however, an alternate explanation could be that
they have increased caution and less impulsivity (86). These
results are supported by reports indicating that administration of
SSRIs early in life results in long-lasting anxiogenic phenotypes
(29,32,87). We also show that chronic, but not acute, re-exposure

Figure 6. Effects of fluoxetine (10 mg/kg, b.i.d.) treatment in adult rats
(matched control group) on behavioral responsivity to forced swim stress
(A–F). Short-term (n � 7/group): FLX-treated rats displayed significantly
longer latencies to immobility (A), lower total immobility (B), higher swim-
ming and climbing counts and lower floating counts (C) when compared
with VEH-treated control rats. Long-term (n � 7/group): no differences were
observed in any of the measures assessed between the groups. *Signifi-
cantly different from VEH-treated rats (p � .05). Data are presented as
latencies to become immobile and total immobility (in seconds) and as
cumulative 5-second intervals of swimming, climbing, and floating counts
(mean � SEM). b.i.d., twice daily; FLX, fluoxetine; FST, forced swim test; VEH,

vehicle.
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i.e., 5 days) to FLX in adulthood alleviates the FLX-induced
nxiety-like behavior observed in the start-to-feeding test, findings
onsistent with previous reports (88). Furthermore, these findings
re supported by studies showing that initial exposure to antide-
ressants, which have been used successfully for the management
f anxiety disorders, exacerbate anxiogenic-like behaviors in hu-
ans (89–91) and animals (92–94), but these alterations dissipate

fter prolonged exposure (95–97). Under the appropriate condi-
ions, behavioral reactivity in the OF can also be used as an index
f anxiety (98); thus, it must be noted that the overall activity
bserved in the OF (Figure S3A,B in Supplement 1) does not

igure 7. Effects of fluoxetine (10 mg/kg, b.i.d.) exposure during adoles-
ence in adult male rat sexual behavior (A–C; n � 10/group). Rats were given
wo 90-minute sessions (at postnatal day 80 and 90, respectively) to copu-
ate with a receptive female. FLX treatment during adolescence increased
he latency to mount an estrous receptive female (A), latency to reach the
rst ejaculation (B), and the total number of ejaculations (C) compared with
EH-treated control rats in the first sex session (PD80). During the second
ex session (PD90), FLX treatment during adolescence increased latency to
jaculate (B, right panel) and decreased ejaculation frequency (C, right
anel) without affecting latency to mount (A, right panel). *Significantly
ifferent from VEH-treated rats (p � .05). b.i.d., twice daily; FLX, fluoxetine;
D, postnatal day; VEH, vehicle.
omplement our findings of increased anxiety-like behaviors.
Nevertheless, reports show that emotionality-related behavior
from the OF and the EPM do not produce a common anxiety-
related factor in adolescent rats (99), indicating that emotionality
is multidimensional and that these tests do not always comple-
ment each other (100–103).

Fluoxetine-treated rats showed lower levels of behavioral
despair when exposed to forced swimming. Rats tested 24 hours
after treatment showed coping patterns commonly categorized as
antidepressant-like behaviors (39,104,105), and this effect was also
present in the long-term group (i.e., those treated during adoles-
cence and tested in adulthood). These findings were not due to
FLX-induced changes in motor activity because rats tested 24
hours after day 1 of FST showed no differences in distance
traveled in the OF (Figure S3C,D in Supplement 1). An antide-
pressant-like phenotype after adolescent FLX counters reports
showing that early-life (PD4–PD21) FLX administration renders
mice vulnerable to stressful situations in adulthood (29,32,56).
However, other studies using similar age and treatment regimen
in mice also find equivocal results (87,88,106–108). To determine
if these effects were specific to age of FLX exposure, we treated
adult rats and exposed them to forced swimming 24 hours or 21
days after the last injection (i.e., matched drug regimen and
testing time as the adolescents). Only those adult rats tested 24
hours after treatment displayed reduced behavioral despair in the
FST, while the long-term group did not differ from control rats.
Our results suggest that the FLX-induced effects in the FST may
be specific to adolescent FLX treatment, and this assumption is
supported by studies demonstrating that altered behavioral pro-
files induced by antidepressants are dependent on age of expo-
sure (29,32,56,88). The mechanism(s) underlying these effects
are unknown. In adults, antidepressants regulate complex cellu-
lar and intracellular signaling mechanisms such as brain-derived
neurotrophic factor, extracellular signal-regulated kinase, and
cyclic adenosine monophosphate-responsive element binding pro-
tein activity, factors associated with the regulation of mood and
motivation, resulting in lasting synaptic changes influencing behav-
ioral functioning (109–112). Fluoxetine actions in the nervous
system are complex, and more detailed assessments of these
phenomena accounting for length of exposure and discontinuation
and developmental periods are clearly needed (35,97,113–115).

Lastly, we assessed whether FLX exposure during adoles-
cence influences sexual behavior later in adulthood (see Figure
S6 in Supplement 1). Fluoxetine-exposed rats showed increased
latencies to mount and ejaculate and deficits in ejaculation
frequency. Antidepressant treatments interfere with sexual func-
tioning in both humans and rodents (116–118); however, these
findings were unexpected, as the drug washout period for this
particular group of animals was over 30 days and the behavioral
deficits were observed at both PD80 and PD90 sessions. The
mechanism(s) underlying these effects are also unknown. Sero-
tonin interacts in a complex manner with several of its receptors
to inhibit various aspects of sexual and ejaculatory functioning
(119,120). Therefore, it is conceivable that early-life FLX induces
long-lasting changes in receptors (e.g., increased sensitivity
and/or density) known to inhibit sexual behavior (121). Alterna-
tively, it is possible that sustained FLX exposure dysregulates
second messenger systems, since others have shown that altered
cyclic adenosine monophosphate-responsive element binding
protein activity within the NAc of adult rats leads to impairments
in the initiation of sexual behavior, but not the rewarding aspects
of sex, in addition to increases in anxiety-like behavior
(46,122,123). These findings parallel our results after adolescent

FLX exposure: longer latencies to initiate sexual activity and

www.sobp.org/journal
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ncreased sensitivity to anxiety-inducing situations in adulthood.
nfortunately, our results cannot discern whether the appetitive
spects of sexual behavior were influenced by FLX because the
ependent variables assessed do not differentiate between inter-
st and performance. Nevertheless, it is unlikely that the longer
atencies to initiate sexual activity were due to a reduced reward
alence, because FLX-treated rats initiated sexual behavior no
ifferently than control rats on the PD90 session, thus indicating
hat this impairment is likely due to increased anxiety and not
educed reward sensitivity (46,122,123). In fact, the NAc has
ecently been found to exert a significant influence on anxiety-
elated behaviors in both rodents and humans (46,123,124).

The overall results from our study indicate that treatment with
LX during adolescence can influence responsiveness to reward-
ng and aversive stimuli in adulthood. These complex functional
utputs are likely regulated by many factors, including the
motional valence of the stimulus, the environment in which it is
xperienced, and the brain circuitry likely being engaged by it.
ur findings also demonstrate that FLX-induced anxiety-like
ehavior can be alleviated by re-exposure to FLX itself. However,
t is imperative to note that the FLX-induced effects described in
his study were derived from normal animals, and similar FLX
reatment using established animal models for depression might
ield different results. Given that our subjects were purchased, it
s impossible to determine if and/or how stress of shipping may
ave influenced our results. Another caveat is that we did not
nclude female subjects in our study, further limiting the inter-
retability of our results. Indeed, the results from this study
hould be interpreted with caution because FLX remains a safe
nd effective treatment for pediatric MDD.
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